wire cable in warehouse

Welding Cable Ampacity Chart

CHOOSING THE RIGHT WELDING CABLE

Direct Wire Flex-A-Prene® Welding Cable

Direct Wire’s welding cable ampacity chart intends to support and guide welding professionals toward the proper cable gauge and length. This information is for reference only, and it is highly recommended the user consult a licensed electrical engineer for a particular welding application.

For welding applications, using the proper cable gauge size is critical to ensure high-quality welds and protect the user and their welding equipment. Specifications that should be considered when selecting welding cable include:

AMPACITY: Welding cable ampacity (also known as current-carrying capacity or current rating) refers to the maximum amount of current (in amperes) that a cable conductor can continuously and safely carry without exceeding the operating temperature rating.

LENGTH: Welding cables should be long enough to provide the user with adequate length to reach all work areas—without becoming a hazard. It is essential to keep in mind (1) ampacity ratings decrease as length increases due to additional resistance, and (2) welding cable should be spread apart to allow heat to dissipate during use.

GAUGE SIZE: It is critical to select the proper gauge size for the given welding application. A longer, thinner welding cable will carry lower ampacity. If a longer cable is needed, the user should consider thicker gauge sizes. An improper gauge size will not carry the anticipated current, which can cause excessive heat absorption (melting and fire hazard), failure, and damage to equipment.

CONSTRUCTION: Welding cable construction uses a multi-stranded single conductor insulated (or jacketed) by a single layer of EPDM or neoprene thermoset with a temperature rating of -50°C (-58°F) to 105°C (221°F). Superior flexibility, durability, and resistance properties are also vital to a welding cable’s ability to perform in a range of demanding applications and environments.

STANDARDS & APPROVALS: Welders should look for key industry standards and approvals, ensuring quality and performance while protecting against substandard manufacturing. For welding cable, these may include SAE J1127 (battery), NFPA 70/NEC Article 630, UL 558 and 583 (and others), and CA Prop 65.

Direct Wire’s Flex-A-Prene® and Ultra-Flex® premium welding cables meet or exceed the SAE J1127 standard, which requires minimum copper amounts per gauge (i.e., guaranteed copper contents), appropriate sizing for specific applications, and testing for mechanical and performance characteristics.

FLEXIBILITY: Fine copper stranding and a high-quality outer insulation/jacket layer provide welding cable with increased flexibility, smoother pulling across various surfaces, and ease-of-movement on the job site.

COLOR & MARKINGS: Colored welding cable and customized markings can be used for various applications, including ownership and identification, accurate footage (or sequential) markings, industry standards and approvals, physical and mechanical characteristics, branding, and more.

SUGGESTED IN-LINE AMPACITY FOR WELDING CABLE

 50'75'100'125'150'175'200'225'250'275'300'325'350'
AMPs
AWG or MCM
100#4#2#2#1#11/02/02/03/03/03/04/04/0
150#2#2#11/02/03/03/04/04/0250250250350
200#2#12/03/03/04/04/0250350350350350
250#11/03/04/04/0250350350350
300#12/03/04/0250350350350
3501/03/04/0250350350
4002/03/0250350350
4502/04/0250350350
5003/04/0350350
5504/0250350
6004/0250350

NOTE 1: For reference only. Due to variables within welding applications, it is recommended the user consult an electrical engineer for a particular welding application.
NOTE 2: Distance from power source (per lead).

Download / Print Ampacity Chart

    REQUEST INFORMATION

    Complete the form below to learn more about the difference Direct Wire can make as your partner for premium cable systems and assemblies.


      REQUEST A QUOTE

      Complete the form below and briefly explain your business needs, which will help us route your quote request to the appropriate team member.